The inflammasome: Learning from bacterial evasion strategies.

نویسندگان

  • Sunny Shin
  • Igor E Brodsky
چکیده

The innate immune system plays a critical role in defense against microbial infection and employs germline-encoded pattern recognition receptors to detect broadly conserved microbial structures or activities. Pattern recognition receptors of the nucleotide binding domain/leucine rich repeat (NLR) family respond to particular microbial products or disruption of cellular physiology, and mediate the activation of an arm of the innate immune response termed the inflammasome. Inflammasomes are multiprotein complexes that are inducibly assembled in response to the contamination of the host cell cytosol by microbial products. Individual NLRs sense the presence of their cognate stimuli, and initiate assembly of inflammasomes via the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the effector pro-enzyme caspase-1. Inflammasome activation leads to rapid release of pro-inflammatory mediators of the IL-1 family as well as the release of intracellular alarmins due to a lytic form of programmed cell death termed pyroptosis. Over the past 15 years, a great deal has been learned about the mechanisms that drive inflammasome activation in response to infection by diverse pathogens. However, pathogens have also evolved mechanisms to evade or suppress host defenses, and the mechanisms by which pathogens evade inflammasome activation are not well-understood. Here, we will discuss emerging evidence on how diverse pathogens evade inflammasome activation, and what these studies have revealed about inflammasome biology. Deeper understanding of pathogen evasion of inflammasome activation has the potential to lead to development of novel classes of immunomodulatory factors that could be used in the context of human inflammatory diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome

Microbial infection triggers assembly of inflammasome complexes that promote caspase-1-dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflamma...

متن کامل

Evasion of inflammasome activation by microbial pathogens.

Activation of the inflammasome occurs in response to infection with a wide array of pathogenic microbes. The inflammasome serves as a platform to activate caspase-1, which results in the subsequent processing and secretion of the proinflammatory cytokines IL-1β and IL-18 and the initiation of an inflammatory cell death pathway termed pyroptosis. Effective inflammasome activation is essential in...

متن کامل

Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribut...

متن کامل

A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion.

Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intra...

متن کامل

Evaluation of the Expression of NLRP1 Inflammasome in Patients with Bacterial Septicemia

Background: Septicemia is the most important cause of mortality, especially in hospitalized patients, due to the influence of the immune response by infection. NLRP1 (Nod-like receptor P1) is an intracellular receptor that recognizes microbial-dependent molecular patterns. The main intracellular mechanism of anti-septicemia is still being investigated. The purpose of this study was to evaluate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Seminars in immunology

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2015